Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Agric Food Chem ; 71(18): 6775-6788, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2316169

ABSTRACT

Mitochondrial dysfunction may cause cell death, which has recently emerged as a cancer prevention and treatment strategy mediated by chemotherapy drugs or phytochemicals. However, most existing drugs cannot target cancerous cells and may adversely affect normal cells via side effects. Mounting studies have revealed that phytochemicals such as resveratrol could ameliorate various diseases with dysfunctional or damaged mitochondria. For instance, resveratrol can regulate mitophagy, inhibit oxidative stress and preserve membrane potential, induce mitochondrial biogenesis, balance mitochondrial fusion and fission, and enhance the functionality of the electron transport chain. However, there are only a few studies suggesting that phytochemicals could potentially protect against the cytotoxicity of some current cancer drugs, especially those that damage mitochondria. Besides, COVID-19 and long COVID have also been reported to be correlated to mitochondrial dysfunction. Curcumin has been reported bringing a positive impact on COVID-19 and long COVID. Therefore, in this study, the benefits of resveratrol and curcumin to be applied for cancer treatment/prevention and disease amelioration were reviewed. Besides, this review also provides some perspectives on phytochemicals to be considered as a treatment adjuvant for COVID-19 and long COVID by targeting mitochondrial rescue. Hopefully, this review can provide new insight into disease treatment with phytochemicals targeting mitochondria.


Subject(s)
COVID-19 , Curcumin , Humans , Resveratrol/pharmacology , Curcumin/pharmacology , Curcumin/metabolism , Post-Acute COVID-19 Syndrome , COVID-19/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics
2.
Front Nutr ; 9: 899842, 2022.
Article in English | MEDLINE | ID: covidwho-1834491

ABSTRACT

Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.

3.
Food Funct ; 13(5): 2846-2856, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1700242

ABSTRACT

Obesity is a serious global health issue, and the societal interventions during the COVID-19 pandemic may have perturbed energy homeostasis, which affects the condition of obesity. Tea is a traditional beverage in Asia and has been shown to provide many beneficial health effects. Oolong tea is semifermented, with its chemical composition comprising features of green (unfermented) and black (fermented) tea. Although green tea has anti-obesity properties, studies on the anti-obesity ability of oolong tea are still scarce. In this study, we analyzed the chemical composition of oolong tea extract (OTE) and investigated the effects of OTE on high-fat diet-induced obese rats. OTE contained more (-)-epigallocatechin-3-gallate, (-)-epigallocatechin, and (-)-gallocatechin-3-gallate than theaflavins and theasinensins. Rats fed with a high-fat diet (HFD) and treated with 0.5% OTE exhibited significantly reduced body weight and visceral fat weight compared with the HFD-only group. OTE also decreased adipocyte size, lipogenesis-related protein sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) protein expression and increased thermogenesis-related protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and uncoupling protein 1 (UCP1) protein expression in epididymal adipose tissue compared with the HFD group. Moreover, the OTE groups had a significantly higher abundance of Candidatus arthromitus and Hydrogenoanaerobacterium and a lower abundance of Ruminococcus1, Oscillibacter, and Odoribacter compared with the HFD group. All these results show that OTE can alleviate weight gain by regulating lipid metabolism and modulating the distribution of the gut microbiota to decrease lipid accumulation in adipose tissue.


Subject(s)
Anti-Obesity Agents/pharmacology , Plant Extracts/pharmacology , Tea , Adipose Tissue/metabolism , Animals , Anti-Obesity Agents/chemistry , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Male , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
4.
J Tradit Complement Med ; 10(4): 420-427, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-436441

ABSTRACT

A novel coronavirus disease (COVID-19), transmitted from humans to humans, has rapidly become the pandemic responsible for the current global health crisis. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is said to be of zoonotic origin. This review describes the etiology and signs and symptoms as well as the current allopathic therapy for COVID-19. Additionally, findings of previous studies on the immunomodulatory effects and antiviral activities of particular foods and herbs on influenza virus and coronaviruses have been collated, with the aim of promoting the use of dietary therapy and herbal medicine as COVID-19 preventive therapies, while specific drugs and vaccines are yet to be discovered or are still under development. The volume of existing reports is irrefutable evidence that foods and herbs possess a potential antiviral ability against SARS-CoV-2 and can prevent COVID-19. Foods and herbs could be used as dietary or complementary therapy to prevent infection and strengthen immunity, as antiviral agents for masks, as disinfectants to curb aerosol transmission, or as sanitizing agents to disinfect surfaces. However, these hypotheses need to be experimentally verified for SARS-CoV-2 and COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL